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Abstract—Various C1-symmetric chiral tripodal tris(oxazolines) with two different oxazoline units were synthesized from chiral
C3-symmetric tris(oxazolines) through an oxazoline exchange reaction with amino alcohols in the presence of zinc chloride. Eval-
uation of the new oxazolines as chiral molecular receptor showed that some of the receptors have chiral discrimination ability.
� 2004 Elsevier Ltd. All rights reserved.
Oxazolines are useful metal ligands in asymmetric cata-
lysts1 and also important heterocycles found in various
natural products.2 Chiral oxazolines are usually pre-
pared by coupling of carboxylic acids with amino alcoh-
ols followed by ring formation or by direct condensation
of nitriles with amino alcohols in the presence of a Lewis
acid such as zinc chloride.3 Among chiral oxazolines,
C2-symmetric bis(oxazolines) have been widely used in
metal-catalyzed asymmetric catalysis.4 Recently we
introduced C3-symmetric tripodal oxazolines, which
have several unique features as artificial receptors.5 We
also demonstrated that the C3-symmetric tripodal oxaz-
olines are potentially useful ligands for potassium eno-
lates in an asymmetric conjugate addition reaction.6

Our tripodal oxazolines provide a C3-symmetric
�screw-sense� chiral environment upon binding organo-
ammonium or potassium ions. During the studies, we
became interested in tripodal oxazolines of C1-symme-
try, that is, non-C3-symmetric, which would provide a
different chiral environment.7 In an effort to synthesize
C1-symmetric tripodal oxazolines, we have found that
oxazoline rings undergo an exchange reaction with ami-
no alcohols in the presence of zinc chloride. Herein, we
wish to report a novel synthesis of C1-symmetric tripo-
dal oxazolines through the oxazoline exchange reaction.
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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To synthesize C1-symmetric benzene-based tripodal
oxazolines (C1-BTOs), several approaches are possible.
One is to introduce three oxazoline rings with at least
one different substituent that provide the screw-sense
chirality, depicted as type I (R1 = R2 6¼ R3 or
R1 6¼ R2 6¼ R3, oxazoline substituents at C-5).

Another approach to synthesize C1-BTOs is to introduce
one oxazoline ring, of which substituent has the oppo-
site stereochemistry to that of the other two (type II
C1-BTOs). In this case, we can use either the same oxaz-
olines (type IIa) or different ones (type IIb; R1 6¼ R2).
We studied the latter approach. The type II oxazolines
seem to provide a chiral environment of marked steric
difference compared to type I.

To synthesize the type II C1-BTOs in which R1 6¼ R2, we
first studied the introduction of third oxazoline part into
a bis(oxazoline) precursor, 1a, as shown in Scheme 1.

The bis(oxazoline) 1a was prepared from tris(cyano-
methyl)mesitylene by treatment with LL-valinol in the
presence of zinc chloride (1.2equiv) in refluxing chloro-
benzene for 60h in 15% isolated yield, together with 34%
of the corresponding tris(oxazolines) (2a).5 Treatment of
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Scheme 2. Synthesis of C1-BTO 3c from C3-BTO 2b through oxazoline

exchange mediated by ZnCl2.

Scheme 1. Synthesis of C-BTO 3a from bis(oxazoline) 1a.
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bis(oxazoline) 1a with DD-alaninol under similar reaction
conditions afforded C1-BTO 3a in 12% isolated yield, to-
gether with recovered 1a in 25% yield.
Changing the amino alcohol, from DD-alaninol to 2-ami-
no-2-methyl-1-propanol, provided the corresponding
C1-BTO (3b) in 26% yield, recovered starting material
(5%), and an unexpected product in 12% yield. The
unexpected product was found to be C1-BTO 3c. This
result indicated that an oxazoline could be converted
into another oxazoline through an exchange reaction
with an added amino alcohol under the reaction condi-
tions. Based on this finding we investigated the exchange
reaction for the tripodal oxazolines 2 to synthesize var-
ious C1-BTOs 3. The exchange reaction occurred gener-
ally for the oxazolines examined. For example,
treatment of tris(oxazoline) 2b with LL-valinol (1.5equiv)
Table 1. Synthesis of C1-BTOs 3 from bis- and tris(oxazolines) 1a and 2 me

Entry Reactant Amino alcohol (equiv)b

1 1a DD-Alaninol (2.4)

2 1a 2-Amino-2-methyl-1-propanol (3.0)

3 2b LL-Valinol (1.5)

4 2c LL-Valinol (1.5)

5 2c LL-Phenylglycinol (1.5)

6 2c LL-Phenylglycinol (2.4)

7 2e LL-Phenylglycinol (2.4)

a 1.2molarequiv of ZnCl2 are used.
b The numbers in parentheses are molar equiv used.
c Chlorobenzene as the solvent.
d Isolated yields after column chromatography on SiO2; other minor side pr
in the presence of zinc chloride (1.2equiv) in refluxing
chlorobenzene for 12h afforded C1-BTO 3c in 32% yield,
with recovered starting 2b in 18% yield (Scheme 2).

Compared to the synthetic route that starts with
bis(oxazoline) 1a (Scheme 1), this exchange route was
much more efficient and provided various C1-BTOs in
higher yields. The results are summarized in Table 1.8

Using 1.5equiv of amino alcohols, usually �mono-ex-
changed� products were produced in 30–34% yields with
recovered starting oxazolines (18–43% yields) (entries
3–5). When 2.4equiv of amino alcohols were used, �di-
exchanged� products were produced in 17–20% yields
along with mono-exchanged products (10–12% yields)
(entries 6 and 7). Thus, the oxazoline exchange reaction
is useful for the synthesis of tris(oxazolines) composed
of different oxazolines, which are otherwise difficult to
synthesize by known methods. Although a metal-cata-
lyzed trans-amidation reaction is known,9 to the best
of our knowledge, this is the first example of metal-
catalyzed oxazoline exchange reaction with amino
alcohols.10

Considering the importance of bis- and tris(oxazoline)
ligands in catalytic asymmetric reactions and molecular
recognitions, this oxazoline exchange reaction may also
be potentially useful in constructing libraries of oxazo-
line ligands from a variety of chiral amino alcohols
available.

We briefly evaluated C1-BTOs 3a–g as chiral molecular
receptors toward an a-phenylethylammonium ion by the
extraction method as we reported.5c All the receptors
showed high percent extraction, indicating that they
diated by ZnCl2
a

Temp (�C)c Time (h) Product (yield %)d

Reflux 120 3a (12), 1a (25)

Reflux 72 3b (26), 3c (12), 1a (5)

Reflux 12 3c (32), 2b (18)

80 12 3d (30), 3a (6), 2c (43)

100 6 3e (34), 2c (18)

100 24 3f (20), 3e (12)

100 24 3g (17), 2d (10)

oducts are not included.
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are stronger binders toward ammonium ion. A signifi-
cant chiral discrimination was observed in the cases of
C1-BTOs 3e–g, whereas little enantioselection was ob-
served in the cases of other receptors. For example, with
C1-BTO 3f 100% extraction and an enantioselection of
59(S):41(R) were obtained, and with 3g 80% extraction
and an enantioselection of 58(S):42(R) were obtained.
Thus, only those C1-BTOs that have phenyl-substituted
oxazolines show substantial enantioselection, which im-
plies that the oxazoline substituent plays an important
role in the chiral discrimination. Also, the enantioselec-
tivity observed with the C1-BTOs are lower than that
observed with the C3-symmetric PhBTO.5c These results
raise questions on the enantioselection mechanism with
the C1-BTOs in comparison with the C3-PhBTO.

In conclusion, we have synthesized various chiral tripo-
dal oxazolines that have C1-symmetry. The synthesis
involved a novel zinc chloride-promoted oxazoline
exchange reaction with added amino alcohols. A prelim-
inary study showed that some of the C1-BTOs also have
chiral discrimination ability toward an a-phenylethyl-
ammonium ion. A further study on the chiral discrimi-
nation mechanism and catalytic asymmetric reactions
with the C1-BTOs are under investigation and will be
reported elsewhere.
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